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Outline

Why study trace metals in biological systems ?
Why use hard X-ray fluorescence microscopy ?
– How does it relate to other techniques

Scientific Applications:
– Zn in heart muscle cells
– TiO2-DNA nanocomposites as intracellular tools 

Challenges & Future
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Why Study trace elements / metals in biology and life sciences?
Trace elements (metals) are fundamental, intrinsic components of biological Systems. 
estimated: 1/3 of all known proteins contain metalcofactors as integral, catalytic 
components. These proteins often have regulatory or catalyzing functions, e.g., 
– Cu binding chaperones (protein folding)
– Zn in Zinc finger proteins: transcription factors in the cell nucleus
– Fe in Haemoglobin; and necessary in Chlorophyll synthesis

Metals can be linked to disease
– Endogenous dysregulation, e.g., Alzheimer’s, ALS
– Exogenous uptake, e.g., Pb, As, Hg

Metals can be made use of in therapeutic drugs and 
diagnostic agents
– Cis-platin in chemotherapy
– Sb to treat Leishmaniasis
– Gd in Magnetic resonance imaging (MRI)

See e.g., Science 9 May 
2003 (300 #5621 ) with Focus:
“Metals Impacts on Health 
and Environment”

study distribution and quantity of 
these elements within cells 
to understand how they act
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Why use x-ray-induced fluorescence to study trace metals?

Simultaneously map 10+ elements
No dyes necessary
High signal/background ratio
– sub-ppm (part-per-million) 

sensitivity, increasing with Z
Little radiation damage
Large penetration depth (> 100 μm)
– study whole cells, w/o sectioning
– study ‘thick’ tissue sections
– possibility to study hydrated 

“natural” samples using cryo
monochromatic incident beam: choose 

at which Z  to stop excitation (e.g., 
excite As but not Pb)
straightforward quantification
Map chemical states by XANES

Microspectroscopy / Spectromicroscopy
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Comparison with other techniques:

spatial
resolution

object 
thickness

resolution
limitation

Advantages/Disadvantages

Light-
microscope 200 nm 30 µm wavelength

currently
optics

object 
thickness

Hard X-ray-
microprobe 150 nm 10 –

100 µm

+ changes in living cells can be 
monitored
- need dyes, competition w. proteins 
+/- typically see ions, and not total 
content 
- quantification difficult

+ no dyes (pot. close to native state)
+ low background, high sensitivity
+ simultaneously detect >10 elements
+ µ-XANES for chemical state mapping
- long integration times

Analytical 
Electron-
microprobe

20 nm 0.1 µm

+ high spatial resolution
+ simultanously detect >10 elements
- whole cells very difficult, sectioning 
necessary 
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analytical electron microscope  hard X-ray microscope

to its 

Elemental images of the same air-dried cells from several Sb-treated 
Leishmania amastigotes. Sb is much clearer visible in the x-ray microscope due 

greater sensitivity. Scan width:  10µm.

Collaboration with Ann LeFurgey and Peter Ingram, VA & Duke University
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Schematic of a Hard X-Ray Microprobe

stepscan sample through focused X-ray beam
record full XRF spectrum at each scan point, using 
an energy dispersive detector (typically LN2 cooled Ge, or SDD)
compare specimen counts/spectra to calibration curve, to quantify to area density

E = 5 – 30 keV

ΔE/E=10-4

δ= 150 nm 

2·109 phot/s
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Scientific applications
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Cardiac Hypertrophy

We try to understand properties of 
cardiac hypertrophy on the cellular 
level From American Medical Assoc.

Can be response to mechanical load 
(e.g., athletes) – can be good
But: more often maladaptive process 
(e.g., due to high blood pressure), 
leading to
– a decrease in size of chamber of 

heart
– less pumped blood
– heart cannot fully relax between 

beats
– May lead to 

• Sudden death
• Progression to heart failure
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[Ca2+]max is 
enhanced in 
compensated, 
hypertrophied 
myocytes.

Cardiac hypertrophy due to bigger cardiac 
myocytes (heart muscle cells)

Hypertrophic Compensation
for High Blood Pressure:
120 um x 30 um x 12 um

Normal
120 um x 25 um x 10 um
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Elemental content of cardiac myocytes

Iron (Fe)

P max: 10.2 μg/cm2

K max: 6.6 μg/cm2

Ca max: 0.08 μg/cm2

Fe max: 0.09 μg/cm2

Cu max: 0.02 μg/cm2

Zn max: 0.06 μg/cm2
10 μm

Surprisingly total [Ca] is 
significantly reduced in 
hypertrophied myocytes.

What are these 
striations in Zn ?
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Signaling Cardiac Muscle Injury with Zn ?

MLPZn max: 0.06 μg/cm2

Zn striations occur at ~1.6 μm intervals, which 
corresponds to one complete sarcomere. Zn seems to 
co-localise to I-band – is Muscle LIM Protein (MLP) 
responsible ?

MLP is also implicated as stress sensor. MLP released 
by injury is thought to activate GATA-4 and gene 
expression.

Is Zn enhancing response (‘loading’ Zn-finger proteins) ?

Zn

B. Palmer, et al. J Struct Biol, in press

But, question remains: where exactly does Zn go ?
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TiO2-DNA nanocomposites as 
intracellular probes and tools

T.  Paunesku, S. Vogt, J. Maser, B. Lai, K. Thurn, C. Osipo, H. 
Liu, P. Ingram, A. LeFurgey, and G. Woloschak
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Ti nanocomposites as intracellular probes and tools

attach TiO2 nanoparticle
(4.5 nm diameter) to DNA 

combine DNA 
biochemistry with 
semiconductor properties 
of TiO2

carrier-particle that can 
bind to a specific 
chromosomal region w/ 
ability to cleave it upon 
illumination

T. Paunesku et al, Nature Materials 2, 343-346 (01. May 2003)

T. Paunesku et al, submitted
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transfect mammalian cells with TiO2–DNA nanoparticles, incubate
target appropriate cells using VLM, record cell positions
map elemental distributions (Si, P, …, Ti, … Zn) in hard X-ray microprobe
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TiO2-DNA nanocomposites as intracellular probes

A: scan of a MCF7 cell transfected 
with nanocomposites targeted  to 
nucleolus

B: scan of a PC12 cell transfected 
with nanocomposites targeted  to 
mitochondria

5 μm

P: 0.4 - 0.0 Ti: 0.22 – 0.00 Zn: 0.007 – 0.000

Units: μg/cm2
P: 13 - 0 Ti: 0.25 – 0.00 Zn: 0.039 – 0.001

5 μm

A:

B:

Conclusion:
Can target specific organelles with TiO2-DNA nanocomposites
Currently 10-20% transfection efficiency

Future: Nanocomposites as tools for Gene therapy ?
Correct defective genes responsible for disease development, e.g., 

destroying mutated and dominant genes (e.g., oncogenes)
replacing mutated and recessive genes (e.g., tumor suppressor genes) 

But, question remains: 
how do nanocomposites localise
WITHIN mitochondria or nucleolus ?
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Future and Challenges
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Challenge: high spatial resolution

Typical sizes of cell structures and 
organelles:
nucleus: 2-5 µm
mitochondrion: 0.5x2 µm (cellular 
respiration)
ribosome: 25 nm (protein synthesis 
from mRNA)
chromatin fiber: 20 nm diam. (DNA 
double helix on histones)
microtubuli: 20 nm diam. 
(cytoskeleton)
membrane thickness: 8 nm

need spatial resolution of 
<20 nm
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Challenge: high spatial resolution

Typical sizes of cell structures and 
organelles:
nucleus: 2-5 µm
mitochondrion: 0.5x2 µm 
(cellular respiration)
ribosome: 25 nm (protein synthesis 
from mRNA)
chromatin fiber: 20 nm diam. (DNA 
double helix on histones)
microtubuli: 20 nm diam. 
(cytoskeleton)
membrane thickness: 8 nm

need spatial resolution of 
<20 nm
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Challenge: high spatial resolution

Typical sizes of cell structures and 
organelles:
nucleus: 2-5 µm
mitochondrion: 0.5x2 µm 
(cellular respiration), w/ 
substructure !
ribosome: 25 nm (protein synthesis 
from mRNA)
chromatin fiber: 20 nm diam. (DNA 
double helix on histones)
microtubuli: 20 nm diam. 
(cytoskeleton)
membrane thickness: 8 nm

need spatial resolution of 
<20 nm
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Challenge: high spatial resolution

Typical sizes of cell structures and 
organelles:
nucleus: 2-5 µm
mitochondrion: 0.5x2 µm (cellular 
respiration), w/ substructure !
ribosome: 25 nm (protein synthesis 
from mRNA)
chromatin fiber: 20 nm diam. (DNA 
double helix on histones)
microtubuli: 20 nm diam. 
(cytoskeleton)
membrane thickness: 8 nm

need spatial resolution of 
<20 nm
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Challenge: high spatial resolution
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Spatial resolution, sensitivity & radiation damage
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Spatial resolution in a microprobe
To achieve diffraction limited spot size, must illuminate X-ray optics coherently
=> any increase in brilliance directly increases focused flux accordingly 
Currently, high-res X-ray optics ‘routinely’ achieve <= 200nm; 
demonstrated on Japanese 1km beamline: 40nmx30nm
ANL demonstrated with new Multilayer Laue Lens <30 nm in 1D (Maser et al)

• Ideal structure: 

- Resolution approaching 1 nm feasible, 

- Diffraction efficiency (2D) > 50%

• Tilted MLL: δ = 5 nm feasible 

Kang et. al, PRL, 2006Graphs courtesy  J. Maser



26

Sensitivity, spatial resolution and radiation damage:

Exciting optics developments: <10 nm spatial resolution 
seems achieveable, but what about radiation damage ?
From soft X-ray microscopy, Limit is ~ 1010 Gy, corresponding to:
– focused flux density of 1013 ph/s/μm2  at 10keV (we currently have 1011

ph/s/μm2)

10 keV incident beam energy, biological sample in water (frozen hydrated)

Upgraded (200 mA, 1.0 nm, UA, 
L=8.0 m), = 40x more coherent flux
plus assume XRF detector collects 30% 
of 4πSR

Today (100 mA, 3.0 nm,UA, L=2.4 m)
XRF detector collects 6% of 4πSR

minimum detectable Zn [#atoms], limited by rad damage:

Spot size
sample 
thickness [um]

200 
[nm]

20 
[nm]

5 [nm] 
(0.1s)

0.1 [um] 3500 35 15
10 [um] 26000 260 60 2550180010 [um]

461800.1 [um]

5 [nm] 
(0.002s)

20 [nm] 
(0.03s)

200 
[nm]

sample 
thickness [um]

Spot size
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APS upgrade vs detectors & optics ?

Most of the improvement in sensitivity comes from detector and optics 
improvement. What role does APS (ring & ID upgrade) play ?

SPEED !!! - only this will make certain experiments feasible

27.850.1
17.4201
0.22001

scan time 
[h]

resolution 
[nm]dwell time [s]

0.650.002
0.5200.03
0.22001

scan time 
[h]

resolution 
[nm]dwell time [s]

Upgraded (200 mA, 1.0 nm, UA, L=8.0 m)
plus assume XRF detector collects 30% 
of 4πSRToday (100 mA, 3.0 nm,UA, L=2.4 m)

XRF detector collects 6% of 4πSR

Example scan of a cell nucleus (5x5 microns)



28

Other Future requirements: Sample Preservation !
study cells / tissues as close to their native, hydrated state as possible:
– avoid artifacts introduced by chemical fixation / drying

reduce radiation damage, in particular to oxidation state

elemental mapping of rapid frozen samples at cryogenic temperatures
(LN2)

Cy: cytoplasm
V: vesicle      
M: nuclear membrane
N: nucleus

- Drosophila 
melanogaster cell, in 
vitrified ice, imaged @ 
0.5 keV with the 
Goettingen TXM @ 
BESSY I. 

cryoTXMD. Melanogaster cell, chemically fixed, 
extracted, at room temp.

TXM



29

Summary: Hard x-ray fluorescence microscopy for biological systems

Focus hard x-rays on sample, raster scan sample through focal spot, 
collect characteristic x-ray fluorescence at each position to determine 
elemental content

Current spatial resolution: 150 nm

Large penetration depth ⇒ Unsectioned cells, tissue section

X-ray induced x-ray fluorescence

– High trace element sensitivity (10-18g) for medium to high Z elements

– Quantification to ppm level for most metals

– Combine with micro-XANES to determine speciation
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APS upgrade:
Is required, to allow acquisition of high resolution data in realistic timeframe
But needs to be accompanied by improvements in 
– Optics (high spatial resolution, stability)
– Specimen Preparation / Environment (cryo)
– Detectors (large solid angle)
– Data analysis (quantification, automation)
– Correlative experiments with other 

techniques (IR, visible light, EM, ..)

5 nm spatial resolution then seems achievable, 
with sensitivity down to ~3 Zn atoms, 
for biological samples

Enable future experiments, that, 
detect and map single nanovectors
in cells and tissues  (e.g., 
combine Gd base MRI contrast agent, 
with TiO2-DNA active component)
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Proposed new beamline: The BioNanoprobe

• Dedicated to Life Sciences
• Energy range: 5-35 keV, optimised for 5-20 keV (Ti – I K edge 

spectroscopy, Cs – U L edge spectroscopy)
• mapping mode: lateral spatial resolution: <= 20 nm (5nm) , estimated 

minimum detection level: ~5 Zn atoms in 1s in a thin sample 
(~3 Zn in <10ms).

• µ-XANES mode: lateral spatial resolution: <= 50 nm (high spectral 
resolution, crystal monochromator)

• cryogenic specimens, in-vacuum  
• reduce radiation damage
• avoid chemical fixation, and correlated artifacts

• fluorescence tomography
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